Photonic ququart logic assisted by the cavity-QED system
نویسندگان
چکیده
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology.
منابع مشابه
Scalable photonic quantum computation through cavity-assisted interactions.
We propose a scheme for scalable photonic quantum computation based on cavity-assisted interaction between single-photon pulses. The prototypical quantum controlled phase-flip gate between the single-photon pulses is achieved by successively reflecting them from an optical cavity with a single-trapped atom. Our proposed protocol is shown to be robust to practical noise and experimental imperfec...
متن کاملQuantum dot - photonic crystal cavity
The focus of our effort has been to develop quantum information processing technologies based on a solid-state cavity QED platform consisting of quantum dots in photonic crystals. The main goals that we have accomplished include: 1. Study of the ultrafast dynamics of the quantum dot-cavity QED system [Majumdar et al., Phys. Rev. A, 2012], and ultrafast switching between two single photon pulses...
متن کاملControlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system
We introduce a photonic crystal waveguide-cavity system for controlling single-photon cavity quantum electrodynamics QED . Exploiting Bloch mode analysis and medium-dependent Green function techniques we demonstrate that the propagation of single photons can be accurately described analytically for integrated periodic waveguides with little more than four unit cells, including an output coupler...
متن کاملBichromatic driving of a solid-state cavity quantum electrodynamics system
We theoretically study the bichromatic driving of a solid-state cavity quantum electrodynamics (QED) system as a means of probing cavity dressed state transitions and observing the coherent interaction between the system and the light field. We show that this method can enable the observation of the higher order cavity dressed states, supersplitting and ac-Stark shift in a solid-state system co...
متن کاملAn Inverse–Problem Approach to Designing Photonic Crystals for Cavity QED
Photonic band gap (PBG) materials are attractive for cavity QED experiments because they provide extremely small mode volumes and are monolithic, integratable structures. As such, PBG cavities are a promising alternative to Fabry-Perot resonators. However, the cavity requirements imposed by QED experiments, such as the need for high Q (low cavity damping) and small mode volumes, present signifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015